Transactions of the Society for Mining, Metallurgy, and Exploration, Inc.
Transactions home

  SME FaceBook SME Twitter SME LinkedIn RSS Feed

Dump truck tire stress simulation for extended service life

Transactions of the Society for Mining, Metallurgy, and Exploration , 2012, Vol. 332, No. 1, pp. 422-429

Frimpong, S.; Galecki, G.; Li, Y.; Suglo, R.


Dump truck tires are often used in long-haul roads in rugged terrain, with high rolling and grade resistances. These conditions increase the ton-kilometer-per-hour (tkm/hr) or short-ton-mile-per-hour (stmph)rating of tires, leading to tread wear, cuts and complete failures. The load-bearing capacities of these tires are sometimes exceeded, with truck overloading, overstressing, heating and subsequent failures. In addition, truck tire demand far exceeds the current supply capacity, with long lead ordering time. This condition has caused severe tire shortage, and the problem is expected to be sustained in the long-term. Industry has taken extensive practical measures to prolong tire service life with significant results. However, this problem can be solved through fundamental and applied research initiatives. This paper pioneers a research effort in tire service life using multibody physics, fatigue failure modes and soil failure dynamics to develop tire-road contact force dynamics. A virtual prototype simulator of the tire-road contact, using the CAT 775E (with standard tire 24.00R35) was developed and simulated within the MSC.ADAMS/NASTRAN environments. The results show the areas of the loaded tires with maximum Von Mises, principal and shear stresses, which could result in fatigue failure, tire wear and tear and blowouts. The maximum Von Mises stresses on the six truck tires are between 35 and 58 MPa. The maximum shear stresses are also between 19 and 33 MPa. These stresses will cause early tire failures given an average operating schedule of between 20 and 24 hours per day. The isolated areas with maximum stresses will be subjected to further studies to reduce stress intensity while preserving tire performance.